Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles.
نویسندگان
چکیده
OBJECTIVES It is known that inhalation of zinc oxide nanoparticles (ZnO NPs) induces acute pulmonary dysfunction, including oxidative stress, inflammation, and injury, but there are no reports on how to prevent these adverse effects. We have previously reported that the pulmonary symptoms caused by ZnO NPs were associated with oxidative stress; in the present study, we therefore investigated the use of ascorbic acid (AA), which is known as vitamin C, to prevent these toxic effects. METHODS A ZnO NP dispersion was introduced into rat lungs by intratracheal injection, and thereafter a 1% aqueous AA solution was given as drinking water. Bronchoalveolar lavage fluid was collected at 1 day and 1 week after injection, and lactate dehydrogenase (LDH) activity, heme oxygenase-1 (HO-1), and interleukin-6 (IL-6) levels were measured. In addition, expression of the chemokine cytokine-induced neutrophil chemoattractants (CINCs), HO-1, and metallothionein-1 (MT-1) genes in the lungs were determined. RESULTS Acute oxidative stress induced by ZnO NPs was suppressed by supplying AA. Increases in LDH activity and IL-6 concentration were also suppressed by AA, as was the expression of the CINC-1, CINC-3, and HO-1 genes. CONCLUSIONS Oral intake of AA prevents acute pulmonary oxidative stress and inflammation caused by ZnO NPs. Intake of AA after unanticipated exposure to ZnO NPs is possibly the first effective treatment for the acute pulmonary dysfunction they cause.
منابع مشابه
Evaluation of some Biological Properties of Zinc Oxide (ZnO) Nanoparticles synthesized by Green Method using Aqueous Extract of Rubia tinctrom
Introduction: Free radicals are molecules that have unpaired electrons in their last layer. The excessive production of free radicals causes oxidative stress. Oxidative stress thus adversely alters proteins, DNA and oxidation of the membrane phospholipids. Methods: The cytotoxic effects of zinc oxide nanoparticle were evaluated using MTT (3- (4-5-dimethylthiazol-2-yl) -2,5-difenyltetrazolium br...
متن کاملUse of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation.
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2...
متن کاملIdentification of Exosomal miRNAs in Rats With Pulmonary Neutrophilic Inflammation Induced by Zinc Oxide Nanoparticles
It has been previously shown that inhaled zinc oxide nanoparticles (ZnO-NPs) can modulate inflammation. MicroRNAs (miRNAs) enclosed in exosomes have been identified as an important signature for inflammatory responses. However, the role of exosomal miRNAs during pathogenic inflammation has not been investigated. Healthy rats were exposed to ZnO-NPs (41.7 nm; 2, 4, and 8 mg/kg) or saline (contro...
متن کاملEffect of sub acute exposure of nano Zinc particles on oxidative stress parameters in rats
BACKGROUND: Zinc (Zn) is one of the most important essential elements in the body of animals and plants. Zinc plays a significant role in the structure of more than 300 different proteins and in many life supporting biochemical and metabolic processes such as cellular respiration and protection against free radicals. Nanoparticles of zinc are the new form of Zinc used in cosmetic and personal c...
متن کاملEvaluation of Pulmonary Toxicity of Zinc Oxide Nanoparticles Following Inhalation and Intratracheal Instillation
We conducted inhalation and intratracheal instillation studies of zinc oxide (ZnO) nanoparticles in order to examine their pulmonary toxicity. F344 rats were received intratracheal instillation at 0.2 or 1 mg of ZnO nanoparticles with a primary diameter of 35 nm that were well-dispersed in distilled water. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed at thre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of occupational health
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2015